

AQA Computer Science A-Level 4.6.5 Boolean algebra Concise Notes

S www.pmt.education

0

▶ Image: PMTEducation

Specification:

4.6.5.1 Using Boolean algebra:

Be familiar with the use of Boolean identities and De Morgan's laws to manipulate and simplify Boolean expressions.

🕟 www.pmt.education

0

▶ Image: PMTEducation

Boolean algebra

- Concerns representing values with letters and simplifying expressions.
- Uses the Boolean values TRUE and FALSE

Notation

Expression	Meaning	
A, B, C, etc.	An unknown Boolean value	
Ā	NOT A.	
$A \bullet B$	A AND B	
AB	A AND B	
A + B	A OR B	

Order of precedence

• Some operations must be applied before others

Operator	Precedence
Brackets	Highest
NOT	· ·
AND	
OR	Lowest

Boolean identities

A • 0 = 0	E + 1 = 1	$\overline{G} = G$
B • 1 = B	F + F = F	
$C \cdot C = C$	D + 0 = D	1 + 1 = 1

▶ Image: Second Second

De Morgan's laws

"Break the bar and change the sign"

- "The bar" refers to an overline representing the NOT operation
- "The sign" refers to changing between + (0R) and (AND)
- Can also be applied in reverse, by changing the sign and building the bar

$$\overline{A + B} = \overline{A} \cdot \overline{B} \qquad \qquad \overline{C} + \overline{D} = \overline{C} \cdot \overline{D}$$

Distributive rules

• Similar to expanding brackets in Mathematics

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

 $(A + B) \cdot (C + D) = AC + AD + BC + BD$

▶ Image: Contraction PMTEducation